

Table of Contents

Pg I \& Pg 2 - Examples of Standardised Assessment Questions where Problem Solving
Strategies are Required
Pg 3 - Using Maths everywhere for Primary One and Two
Pg 4 - Using Maths everywhere for Primary Three
Pg 5 - Using Maths everywhere for Primary Four
Pg 6-7-Using Maths everywhere for KS2
Pg 8-9 Writing Frames
Pg 10 - The Importance of Effective Questions in Numeracy Problem Solving.
Pg II - Problem Solving Strategies
Pg 12 - Rules of "Groups of 4"
Pg I3-I6-Examples of Problems
Pg 17-Examples of Investigations
Pg 18-Good Websites

Examples of standardised assessment questions where

 Problem Solving Strategies are required.Carol has one pound.
She buys a pencil for thirty-five pence. Work out how much money Carol has left.
Write your answer on the answer line.

Sara starts to fill in the first number wall. She adds up the numbers that are next to each other then she writes the answers in the box above.
for example, four add nine is thirteen.
Fill in the rest of the first number wall. Then fill in all the empty boxes in the second number wall.

Examples of standardised assessment questions where Problem Solving Strategies are required.
I. Use the number fact in the box to help you to fill in the gaps.

$$
15 \times 20=300
$$

$15 \times 21=$
$15 \times 19=$
2. There are 4000 tickets on a full roll.

1999 have been sold.
How many are left?
3. There are some digits missing in each of these sums.

Fill in the missing digits.
The first is done for you.

$$
321+246=567
$$

a) $\mathbf{2 1 6}+51=730$
b) $234+3 \quad 1=575$
c) $486 \div 3-7=823$
4. Use the number fact in the box to help you to fill in the gap.
$365 \times 28=10220$

365 x
$=5110$

Using Maths Everywhere for Primary One

Shopping Bags

Sort items from a shopping bag into sets.
Say how many items are in each set (max.6)
Place correct numeral on each set.

Patterns

Children in line according to a certain pattern e.g. boy-girl; boy-girl etc. Rest have to predict who should go next in line.

Using Maths Everywhere for Primary Two.

Towers of 3
Use two colours of cubes,
How many different towers of 3 cubes can you make?

Attribute Blocks
Sort a collection of attribute blocks for one criterion.
Children have to guess the attribute.

Dominoes
Find pairs of dominoes which have seven dots altogether.

Number Balance

Hang a weight on number IO. Try and hang two weights on the other side so they balance the ten. How many different ways can it be done?

What about 3 weights?

Using Maths Everywhere for Primary Three.

Four Coins

You have alp, a 2p, a 5p and a IOp coin.
How many different amounts of money can you make?
What's the largest amount you can make?
What amounts can't you make?

Digit Cards
Choose three different single digit cards. How many different 2-digit numbers can you make?

Choose another three. Can you make the same amount of 2-digit numbers? Is it always the same amount?

Dice

Take two dice.
How many ways can you turn them so the numbers have a difference of 1 ? What about a difference of 2? 3?

Number Balance
Hang a weight on number IO. Try and hang three weights on the other side so they balance the ten. How many different ways can it be done?

What about 4 weights?

Bag of Sweets

A bag of sweets costs IOp.
How many different ways can you find to pay for it?

Odd Numbers
What happens when you add two odd numbers?
Is this always true?
What about 3 odd numbers?

Using Maths Everywhere for Primary Four.

Three by Three
Place 3 yellow, 3 blue and 3 green counters on a 3×3 grid so that each row and column has only one of each colour.

Dice Sort

How many different ways can you show only odd numbers using 2 dice?

Traffic Lights
Take a red, orange and green counter. How many different traffic lights can you make?

Moneybags
You have I5p in Ips. Share it into 4 bags so that you can pay for any amount from Ip to I5p without taking any coins out of the bags.

Make all the numbers from I to I5 using any of these cards. (You will need to cut them out!)

Using Maths Everywhere for KS2.

Have You Got Change?
I have more than $£ 2$ in my pocket but I can’ł make exactly $£ 2$.
E.g. I might have one pound, one 50p and three 20p's.

What's the largest amount I could have?

Getting Smaller
Take digit cards 5, 3, $4,7$.
Arrange them to make two 2-digit numbers side by side so the left number is smaller than the right.
e.g. 3547

How many other ways can you find?
Digital Sum
Take a blank and a numbered 100 grid. For each number on the numbered 100 grid find the digit sum and write the result in the corresponding place on the blank grid.

What patterns can you find on the digit sums square?

Dicey Times
How many different numbers can you make by multiplying the two numbers you get when you throw two dice?

Calculator Keys
Your calculator has broken and you only have the "2" key and the operation keys:

* - x ㄴ and =

Your challenge is to make the number I5
Record how you did it.
Is there more than one way?

Dicey Dots

Did you know... that the dots on opposite faces of a dice always add up to 7? Use this to help solve these puzzles:

Biggest Sheep Pen

a) A farmer has 50 m of fencing. What area is the biggest rectangular sheep pen he could make?
b) Another farmer also has 50 m of fencing, but he has a 50 m long straight wall already in the field. What is the biggest area he could enclose as a pen for his sheep?
c) A third farmer has 50 m of fencing as well, but he has two 50 m long straight walls meeting at right angles in the field. What is the biggest area he can enclose?

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |

\qquad

Former lIst Field
是

Former 2's Field

Former 3's Field

Writing Frames

Options for recording "Using Mathematics" Activities.
Name

Activity
Date

What I did?

What maths I learnt

What I could do next?

How I liked it
© $) \cdot$
III

Writing Frames

I worked with...

I remembered

I asked these questions...

I learned...

I Used...	apparatus	game
	computer anything else	calculator

The strategy I used was ...

"The Importance of Effective Questions in Numeracy Problem Solving"

1	2	3	4	5	6	7	8	9	10
II	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Choose any "H" and add the opposite corners - what do you notice? Does it always work?
Compare the total of the opposite corners with the centre of any "H". What do you notice?
Which $4 \mathrm{H}^{\prime}$ has opposite corners which add up to 64? What about 156 ? What is the total of the 45 . 4 H "?
What about the 19 " H ?
Will the total of the 82 "H" be odd or even? Check and see.
Can you find a quick way of finding the total of any "H"?
Can you work out the total of any "H" mentally?
Which "H" has a total of l05?

Problem Solving Strategies

The main strategies are:
-Make a list or table.
-Look for a pattern.
-Make a picture or diagram.
-Guess and check (trial and improvement).
-Make it simpler.
-Use logical reasoning.
-Work backwards.

Rules of Groups of 4 / "Working in groups"Mixed Ability or Differentiated?
I. You are responsible for your own behaviour.
2. You must be willing to help anyone in your group who asks.

3. You may not ask the teacher for help unless all of you have the same question.

Sharing Money

Four children were on holiday together.
One wet day they were stuck inside feeling bored. They had no money, so one of them said "Let's look down the back of the chairs and see if we can find any money."

They agreed to share what they found equally between them.
These are the coins they found:
Six Ip coins
Nine 2 p coins

One 20 p coin
Four 5 p coins
Two IO p coins

20p
10p

How did they share the coins out so each person got the same amount?

Towers of Three

You have a red cube, a blue cube and a yellow cube.
Use them to make towers which are 3 cubes tall.
How many different towers can you make?
How do you know you have made them all?

Oranges
Small oranges cost 8 p each.
Large oranges cost $13 p$ each.
Last week I bought some oranges and the bill was exactly £I.
How many of each size of orange did I buy?

Calculate This

The calculator
cost more than $£ 2$
and less thon E_{3}

Tell me the possible amounts I could have paid for the calculator. What's the least amount I could have paid?
And the most?

Don't make me cross!

$$
\text { Ist Cross - } 5 \text { dots }
$$

2nd Cross 9 dots

Build the third cross.
How many dots did it take?
How many dots do you think it will take to build the 4th Cross?
Build it to see if you were right.
How many dots for the l00th Cross?

See the light
A boy standing on a cliff can see two lighthouses flashing. One flashes once every 20 seconds, the other once every 15 seconds. As he watches, they both flash at exactly the same time.
How long will it be until they flash together again?

Maths Investigation Report

Names in Group:

What we had to find out:

What we decided to do:

Our calculations:

What we found out:

Walk to Belfast

Could you walk from here to Belfast in a day? (find out how far it is and how fast you walk)

Head and Height

Is it true that a person's height is about three times the circumference of their head?

Do I need a tape measure? Yes/No

What if I haven’t got one, can I still work out the problem?

A Pile of Pounds

If you had a pile of $£ 1$ coins, one on top of another, as tall as you are, how much money would you have?

Jelly Bellies

Do you get equal amounts of each colour in a pack of Jelly Babies?
What would you expect to find about IO packs?
What about 100 packs?

Examples of Investigations

Is there an easy way to find $121 / 2 \%$?
Find a quick way to get 15% of any quantity.
Can you make all the numbers from I to 20 using only the number 4?
Which breakfast cereal is the best value for money?
How many grains of rice in a packet?
If you sold wristbands in your school, what 3 types would sell best?
If you counted out loud for 24 hours, what number would you get to?
Can you find a quick way to add up all the numbers from I to IOO? (A hundred square might help you)

How many litres of tea or coffee does your teacher drink in a year?

- How many seconds old are you?
- How thick is a piece of paper?
- Can you make a square from four dominoes so each side has the same total?

Can you find some other ways?

- Find ten true statements about the number \mathbf{q}.

Useful \& Good Websites

Go to Whiteboard Resources- KSI or KS2 Problem Solving - Cuddly Toy Sale.
This is an excellent site for real life money/shopping problems. There are two main activities, a one stage problem and a two stage problem. Well worth a visit.

Go to Whiteboard Resources - KS2 Problem Solving - A Bit Fishy.
A nice challenge for children encouraging the use of seeing patterns, making a table and logical reasoning. Thought provoking!

Under the other headings there are so many problems and thinking skills to explore that involve parent / child interaction.

Eg KS2 - Data Handling - Bar Charts, Carroll Diagrams.
www.primaryresources.co.uk
Go to Maths - Solving Problems- Word and Real Life Problems.
Loads of resources for all ages here for your child to try out with you.
www.nrichmaths.org
Search for KSI or KS2 Problems on the Student pages and there are loads of excellent examples to choose from.
Work through some of these with your child.
www.crickweb.co.uk
Search for KS2 Numeracy. There are 7 sub sections (Shape/Weight, Tools, Calculations, Money \&Mean, Properties\&Ordering, Times Tables, Division) all very good and some great activities underneath.
Eg interpreting data etc. Worth exploring.
www.woodlands-junior.kent.sch.uk/maths
Great KS2 site with lots of exciting challenges for your children. Maths
Investigations section is good fun to go "head to head" in Who wants to be a
Mathionaire? Or Countdown. Other sections on Measure Skills, Data and
Probability, Shape and Space Skills, Number Skills all very worthwhile also.
The se are som \quad useful websites.
other useful fhaterials, activities and games can be found on www.clounagh.org andipeveloping Number Knowledge (Sage publications).

